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Supplementary Information 

Immune Landscape, Evolution, Hypoxia-mediated Viral Mimicry Pathways and 
Therapeutic Potential in Molecular Subtypes of Pancreatic Neuroendocrine 

Tumors 

Running Title:  Immune Landscape of Pancreatic Neuroendocrine Tumors 

Supplementary Methods 

RNAseq experiments and data analysis (Validation Cohort-1) 

Libraries for RNAseq were prepared according to the manufacturer’s instructions for 
the TruSeq Stranded Total RNA Sample Prep Kit with Ribo-Zero Gold rRNA Removal 
and unique dual indices (Illumina, San Diego, CA) with input of 100ng total RNA.  
Agilent Bioanalyzer (Santa Clara, CA) and Qubit fluorometry (Invitrogen, Carlsbad, 
CA) were used to determine the concentration and size distribution of the completed 
libraries. Libraries were sequenced following Illumina’s standard protocol either using 
a) the Illumina cBot and HiSeq 3000/4000 PE Cluster Kit or b) the Illumina NovaSeq 
6000 and an S2 flow cell. For the HiSeq, 100 X 2 paired end reads were sequenced 
on an Illumina HiSeq 4000 using Hiseq 3000/4000 sequencing kit and HCS v3.3.52 
collection software. Base-calling was performed using Illumina’s RTA version 2.7.3. 
For the NovaSeq, 150 X 2 paired end reads were sequenced using the NovaSeq S2 
reagent kit and NovaSeq Control Software v1.3.1. Base-calling was performed using 
Illumina’s RTA version 3.3.3. The sequencing for 162 of 173 samples was performed 
by Medical Genome Facility Genome Analysis Core, Mayo Clinic, Rochester, MN, 
USA and 11 samples by Aros Applied Biotechnology (which is now part of the Eurofins 
Genomics, Ebersberg, Germany).  

Fastq files were merged before data analysis where samples were sequenced in more 
than two lanes of NovaSeq platform. The quality control of the sequence reads was 
performed using FastQC1. All the samples had quality score of more than 30 by 
PHRED quality score metrics. Bowtie (v2.2.6)2 was used to align the reads to 
reference transcriptome (GRCh37) as a part of RSEM (v1.2.29)3. The quality of 
mapped reads was checked using RSEM and SAMtools4,5. The quality of RNA and 
RNA species (ribosomal, coding, intronic and intergenic) were further checked using 
CollectRnaSeqMetrics program from Picard tools (v2.1.0; 
http://broadinstitute.github.io/picard) by mapping to reference genome (GRCh37; 
https://www.ncbi.nlm.nih.gov/grc). The read counts were calculated using the RSEM 
software3, and they were normalized and converted to trimmed mean of M-values 
(TMM) and counts per million (CPM; transformed to log values; default parameters) 
using edgeR package6.  

nCounter immune panel verification 

A case set of 38 samples taken from validation cohort-1 was used to perform immune 
gene profiling using the PanCancer Immune Profiling assay on nCounter platform 
(NanoString Technologies). Data analysis was carried out as per the manufacturer’s 
instructions and as described previously7. The analysis was done for only a subset of 
SAM significant genes.  
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Gene Set Enrichment Analysis (GSEA) and single sample Gene Set Enrichment 
Analysis (ssGSEA)  

GSEA8  using the gene set “C7: immunologic signatures” from the Molecular 
Signatures Database (MSigDB)9 was applied to the training cohort to assess 
enhancement of immune pathways in specific PanNET subtypes. The analysis was 
performed using the standalone GSEA package from GenePattern9. ssGSEA8 was 
performed on the training cohort and both the validation cohorts (1 and 2) to validate 
the expression of genes associated with immune cell types10, hypoxia 
(HALLMARKS_HYPOXIA), necroptosis 
(GO_NECROPTOTIC_SIGNALING_PATHWAY) and dendritic cell 
(GSE22282_HYPOXIA_VS_NORMOXIA_MYELOID_DC_UP) gene sets from 
MSigDB across PanNET subtypes. ssGSEA analysis was conducted using the 
ssGSEAProjection R package8,11 from GenePattern9. ssGSEA calculates a separate 
enrichment score for each sample and gene set. Each ssGSEA enrichment score 
represents the degree to which the genes in a particular set are coordinately up- or 
down-regulated within a sample. This provides a gene set enrichment profile for each 
sample11.  

Probabilistic principal component analysis with covariates (PPCCA) 

PPCCA, which is implemented as a part of our previously published exploBATCH 
machine-learning tool12,13, can be applied to simultaneously assess the association of 
two clinical or biological factors (covariates) in a subset of gene expression data from 

patient samples. This is carried out using the statistical test Dbk = bbk  ⁄SE(bbk) to 

determine if samples and their gene expression profile are distributed according to the 
two covariates in the PPCCA principal subspace. The same tool can assess if a 
particular (secondary) factor of interest retains or alters its association with the subset 
of gene expression data by statistically normalizing the main (primary) factor. The 

regression coefficient, bbk, measures the effect of covariate(s) b on the kth probabilistic 
principal component (pPC), and SE is the corresponding standard error. A factor can 
be normalized as follows: 

                                            uck = uak  – xb bbk                                                              

 

where uak and uck are scores of the kth pPC before and after correcting for the covariate, 
respectively, whilst xb is the variable defining covariate information.  

 

Here, the PPCCA method12,13 was used to confirm the association between PanNET 
subtypes (primary factor), hypoxia (secondary factor) and DAMP gene expression 
data (subset of genes) suggested by enrichment and gene expression analysis. Since 
methods like correlation or other association studies (most of the time) perform only 
pairwise comparisons, we applied the PPCCA method to perform simultaneous 
comparison of the three factors listed above. Here, the tool was applied to assess 
whether statistically normalizing for the primary factor (MLP-1) would affect the 
secondary factor (hypoxia) changing its correlation with the gene expression profile. 
The tool is publicly available - https://github.com/syspremed/exploBATCH.  
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Multiplex immunofluorescence  

The OpalTM 7 Solid Tumor Immunology Kit was used to detect 6 markers including 4 
lymphocyte markers (CD4, CD8, CD20, FOXP3), a macrophage marker (CD68), and 
an epithelial marker (Pan-cytokeratin) on formalin-fixed paraffin-embedded (FFPE) 
tissues. The Vectra® fluorescent multispectral imaging system was used for the 
analysis, which was carried out on 7 samples from the training cohort and 21 from the 
RNAseq validation cohort, including 12 MLP1/2 and 16 Intermediate. Using a median 
score of cell type/megapixel we considered differences in protein expression across 
the PanNET subtypes. Insulinoma-like samples were excluded as FFPE was only 
available for 2 cases. 

Visualization of gene expression data 

For the heatmap, genes were clustered (hierarchical clustering) by Cluster 3.014 using 
the default settings, followed by visualization of the clusters using GENE-E from 
GenePattern9. 

Statistics 

Survival analysis was performed using Kaplan-Meier curve and log-rank test using R-
package survival from GenePattern platform9. Kruskal-Wallis statistical test was 
performed. Graphical plots were done using R-packages ggplot2 and survminer.  
Student t test and fold change analysis were performed. 

 

Supplementary Figures 

Supplementary Figure 1. Analysis of differentially expressed immune related 
genes in PanNET according to subtype, clinicopathological characteristics and 
mutations. A. Heatmap of the 132 differentially expressed immune related genes 
(derived from the training cohort (n=72)) in validation cohort-1 (n=109). Immune gene 
expression landscape overlaps with that of the training cohort. B-C. B) Barplot and C) 
cross-table showing concordance of PanNET subtype classification of 10 samples 
from the training cohort that were also profiled by RNAseq. The classification was 
based on original 221 subtype-specific genes published in Sadanandam et al. Cancer 
Discovery 201515. D. Heatmap of the 132 differentially expressed immune-related 
genes (derived from the training cohort (n=72)) in validation cohort-2 (n=26). Immune 
gene expression landscape overlaps with that of the training cohort. E. Heatmap 

showing the expression of the 132 immune-related genes according to PanNET subtype as 
detected by nCounter PanCancer Immune Profiling panel of genes from NanoString 

Technologies in 38 samples selected from training cohort and validation cohort-1. F. 
Heatmap of the insulinoma specific genes from 132 differentially expressed immune-
related genes, derived from the training cohort (n=72). Genes specific to normal 

pancreas and b cells are highlighted. G-K. Differentially expressed immune related 
genes in the training cohort according to clinicopathological and mutational data. F) 
Heatmap of 12 differentially expressed immune-related genes according to tumour 
grade. G) Heatmap of 6 differentially expressed immune-related genes according to 
MEN1 pathway mutations. H) Heatmap of 9 differentially expressed immune-related 
genes according to DAXX/ATRX pathway mutations. I) Heat map of 3 differentially 
expressed immune-related genes according to mTOR pathway mutations. J) Heat 
map of 4 differentially expressed immune-related genes according to T-stages. None 
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of the genes from F-J are specific to any particular phenotype (for example, specific 
grade, stage or mutation).  

Supplementary Figure 2. ssGSEA analysis of hypoxia and necroptosis related 
gene sets in two PanNET cohorts according to molecular subtype. A. Number of 
cases with high or low ssGSEA hypoxia score in each PanNET subtype using training 
cohort (n=72). B. Kaplan-Meier survival plot and number of patients at risk according 
to low and high hypoxia score from training cohort (n=72). C. Number of cases with 
high or low ssGSEA hypoxia score in each PanNET subtype using validation cohort-
1 (RNAseq, n=109). D. Percentage of cases of validation cohort-1 with high or low 
ssGSEA hypoxia score in MLP-1 subtype from validation cohort-1 (RNAseq, n=109). 
E. Number of cases with high or low ssGSEA necroptosis score in each PanNET 
subtype using the training cohort (n=72). F. Kaplan-Meier survival plot and number of 
patients at risk according to necroptosis score from training cohort (n=72). G. Number 
of cases with high or low ssGSEA necroptosis score in each PanNET subtype using 
validation cohort-1 (RNAseq, n=109). H. Percentage of cases of validation cohort-1 
with high or low ssGSEA necroptosis score in MLP-1 subtype. Median hypoxia and 
necroptosis ssGSEA scores were used as a cut-off to dichotomize hypoxia and 
necroptosis scores into high or low. Kruskal-Wallis test was used for barplots and log-
rank test for survival analyses. 

Supplementary Figure 3. DAMP pathway and association analysis with hypoxia 
and PanNET subtypes. A. Heatmap of the 12 DAMP pathway genes in validation 
cohort-1, demonstrating enrichment in the MLP-1 subtype. Red indicates elevated 
expression, blue decreased, and white no change. B-C. 9 of 14 DAMP genes are B) 
statistically significant (FDR<0.2; as shown in the bar plot) and C) differential 
expression of 9 genes between MLP-1 vs. other subtypes. Majority of the genes are 
highly expressed in MLP-1 than in the other subtypes. Kruskal-Wallis statistical test 
was used. D. Pearson correlation of DAMP pathway genes and necroptosis score in 
MLP-1 samples of the training cohort, demonstrating a positive correlation in 11 genes 
and a negative correlation in 1 gene. * represents significant p<0.05 from correlation 
test.  E. Significant (p<0.0001) association of 12 DAMP genes with subtypes (MLP-1 
vs. others) and hypoxia (high vs. low) as assessed by PPCCA method (see Methods 
section). F. Number of samples of the training cohort (n=72) with high or low TLR3 
expression in each PanNET subtype from training cohort (n=72). G. Number of 
samples of the training cohort with high or low ssGSEA dendritic cell (DC) score in 
each PanNET subtype from training cohort (n=72). Kruskal-Wallis test was used for 
barplots. 

Supplementary Figure 4. Validation of ssGSEA analysis for immune cell type 
specific gene sets and expanded immune score in PanNET subtypes. A-F. 
ssGSEA score (FDR ≤ 0.2) vs. PanNET subtype in A-C) validation cohort-1 (n=109) 
and D-F) validation cohort-2 (n=26). Based on the results of training cohort’s analysis, 
immune cell type gene sets chosen for validation were macrophages, co-inhibition of 
T Cells and MHC Class I. G-H. T cell inflamed GEP16 in validation cohorts 1 and 2. 

Supplementary Figure 5. Comparison of immune gene expression and T cell 
inflamed GEP between PanNET subtypes and melanoma disease stages 
(primary vs. metastases vs. normal) samples. A-B. Expression of A) PDL1 and B) 
PDL2 in PanNET subtypes and melanoma disease stages. C. T cell inflamed GEP 
scores in PanNET subtypes and melanoma disease stages. In A-C, T cell inflamed 
GEP genes including PDL1 and PDL2 were merged after batch correction between 
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PanNET training cohort and melanoma dataset (GSE1560517). D. FOXP3 gene 
expression across PanNET subtypes from training cohort (n=72).  

 

Supplementary Tables 

Supplementary Table 1. Cohort and subtype information. A-C. Summary 
characteristics of the A) training cohort (n=72), B) validation cohort-1 (n=119) and C) 
validation cohort-2 (n=26) classified into 4 PanNET subtypes. D. Classification of 
validation (RNASeq) cohort-1 (n=119) into 4 PanNET subtypes using NMF analysis of 
221 PanNET subtype genes.  

Supplementary Table 2. SAM analysis for different cohorts and different 
phenotypes including PanNET subtypes, somatic mutations and clinico-
pathological characteristics. A. SAM analysis between PanNET subtypes and 600 
immune-related genes. B. 132 differentially expressed genes from SAM analysis 
between PanNET subtypes and 600 immune-related genes, classified according to 
the subtype with highest expression. C. Matched genes across validation cohorts with 
132 gene from training cohort SAM analysis and across two validation cohorts. D. SAM 
analysis between tumour grades using 600 immune-related genes in PanNETs. E. 
SAM analysis between presence/absence of MEN1 mutation and 600 immune-related 
genes in PanNETs. F. SAM analysis between presence/absence of DAXX/ATRX 
mutation using 600 immune-related genes in PanNETs. G. SAM analysis between 
presence/absence of MTOR pathway (PTEN and TSC2) mutations using 600 immune-
related genes in PanNETs. H. SAM analysis between different T (tumor)-stages of 
samples using 600 immune-related genes in PanNETs. I. SAM analysis between 
samples with tumour size greater than 2 cm and lesser than/equal to 2 cm using 600 
immune-related genes in PanNETs. 

Supplementary Table 3. ssGSEA analysis for hypoxia and necroptosis and 
characteristics of tumour size. A. ssGSEA enrichment scores for the training cohort 
using hypoxia gene set (hypoxia hallmarks.gmt,), necroptosis gene sets (GO 
necroptotic process msigdb.gmt) and dendritic cells gene set (dendritic cells Bosco 
msigdb.gmt); performed using GenePattern tool. B. Proportion of samples with high 
or low hypoxia score for each PanNET subtype. C. Tumour size data for the PanNET 
samples. D. Proportion of samples with high or low necroptosis score for each 
PanNET subtype. 

Supplementary Table 4. Analysis of the relationship between DAMP pathway, 
PanNET subtype, and necroptosis in the training cohort. A. Enrichment analysis 
of 14 DAMP genes in the MLP-1 subtype; genes enriched at FDR < 0.2 are in blue.  
B. Pearson correlation coefficients and p values of 12 significant DAMP genes with 
ssGSEA score of necroptosis from 72 PanNET samples representing all the four 
subtypes from training cohort. C. Proportion of samples with high and low TLR3 
expression for each PanNET subtype. D. Gene Card results for the 74 Immune-related 
genes showing the highest expression in MLP-1 subtype. E. Enrichment analysis for 
genes highly expressed in MLP-1 subtype from the training cohort using MSigDB’s 
“Investigational analysis” tool and C7 gene sets.  

Supplementary Table 5. immune cell type analysis. A. Immune cell type-related 
genes significantly overexpressed in MLP-1 compared to the other PanNET subtypes 
in the training cohort. B. ssGSEA scores of the training cohort using Immune cell type-
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related gene sets. C. M1 and M2 macrophage genes that are significantly differential 
expressed between subtypes. D-E. ssGSEA scores using immune cell type-related 
gene sets from D) validation cohort-1 and E) validation cohort-2.  

Supplementary Table 6. Multiplex immunofluorescence samples and details. 
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