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SUPPLEMENTARY MATERIALS AND METHODS 

Patients 

Cohort 1: FOCUS (Retrospective cohort, S:CORT) 

As part of the Stratification in COloRecTal cancer (S:CORT) program, 375 patients with available 

formalin-fixed paraffin embedded (FFPE) blocks of the primary CRC were selected from the MRC 

FOCUS randomised clinical trial (RCT) that tested different strategies of sequential and combination 

chemotherapy for patients with advanced CRC.[1] Serial sections were cut from one representative 

block for H&E staining followed by four unstained sections for RNA extraction, a second H&E and 

eight unstained sections for DNA extraction for a total of 722 slides. Glass H&E slides were re-

reviewed by an expert gastrointestinal pathologist and tumour tissue with the associated intratumoural 

stroma was annotated and used to guide RNA and DNA extractions from the first and second H&E 

respectively. No tumour microdissection was performed. Regions of extensive necrosis and non-

tumour tissue were excluded according to standard practice for downstream molecular tumour 

profiling. RNA expression microarrays (Xcel array, Affymetrix), DNA target capture (SureSelect, 

Agilent) followed by NGS sequencing (Illumina) and DNA methylation arrays (EPIC arrays, Illumina) 

were applied in this order. All H&E slides were scanned at high resolution on an Aperio scanner at a 

total magnification of 20x. Digital slides were re-reviewed by a second gastrointestinal pathologist and 

tumour annotations were traced to generate region annotations for machine learning classification. 

Areas containing folds or debris were excluded by digital annotation. Clinical data was retrieved from 

the trial database. Pathological TNM-stage and sidedness were extracted from pathological reports. 

Patients with synchronous disease were considered to be stage IV. 56 slides with technical failure of 

the staining or scanning procedure were excluded from further analysis for a final set of 666 slides 

(n=362 cases). Clinical and molecular data is summarised in [Table S1] and [Figure 1A-B]. 

Cohort 2: TCGA (colon and rectal adenocarcinomas) 

A total of 624 digital slides from 615 cases of colon and rectal adenocarcinoma with available FFPE 

samples were downloaded from the TCGA Data Portal (data accessed on August 2nd, 2018). All 
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digital slides were re-reviewed and tumour tissue was annotated. A total of 156 slides were excluded 

(42 based on quality control criteria and 114 had no CMS classification as explained below). Clinical 

data was obtained from Liu et al.[2] while somatic mutations and gene level expression data were 

downloaded with the R package TCGAbiolinks[3]on November 7th, 2018. Mutations from Varscan 

and Mutect were combined and calls for driver mutations were computed for relevant genes (all 

truncating mutations for APC; missense mutations for KRAS in codons 12, 13, 19, 22, 59, 61, 68, 117 

and 146; V600E for BRAF; all missense and truncating mutations for TP53). The final number of 

slides for imCMS classification was 468 (n = 463 patients) [Table S1] and [Figure 1A-B]. 

Cohort 3: GRAMPIAN (Retrospective cohort, S:CORT) 

A total of 418 slides from 225 pre-treatment biopsy FFPE blocks from rectal cancer patients of the 

neoadjuvant setting were available for this study as part of the S:CORT program. All patients received 

pre-operative chemoradiotherapy followed by surgical resection. Slides and molecular profiling were 

processed as described for cohort 1 (FOCUS) but using 5 to 9 sections for RNA extraction and 9 for 

DNA. Staging was derived at time of resection after neoadjuvant treatment. A total of 12 slides were 

excluded based on quality control criteria for a final set of 406 slides (n = 223 cases). Clinical and 

molecular data is summarised in [Table S1] and [Figure 1A-B].  

CMS calls 

CMS were derived with the random forest (RF) CMSclassifier with the default posterior probability of 

0.5. RF CMS classification of FFPE samples from the FOCUS and GRAMPIAN cohorts led to an 

increased frequency of unclassified samples as compared to the TCGA datasets derived from fresh 

frozen material. To derive calls with comparable frequencies, we computed single sample predictor 

calls after row-centring the expression data.[4]Final CMS calls were generated when there was a 

match between both methods (RF and single sample predictor without applying any cut-off). There 

were 110 TCGA cases with discrepancies between our CMS calls and the calls originally reported, 

mostly involving a lost or gain of unclassified status.[4] These discrepant calls are most likely due to 

application of a clustering method that is strongly cohort-dependent in our analysis of the TCGA 
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samples while the original report combines thousands of samples from several cohorts. Due to lack 

of clear evidence of the ground truth CMS status, these samples were excluded from analysis.  

Secondary CMS calls from RNA in classified samples were computed by RF using the second highest 

call with posterior probability above 0.3. The primary call was matched if no different CMS subtype 

was found. For unclassified samples, the first highest call above 0.3 was used, leaving the sample as 

unclassified if no subtype met this requirement. All these analyses were performed with R v3.5.1. 

imCMS classification 

Pre-processing of image data and exclusion criteria 

Digital slides were re-reviewed and invasive cancer regions were annotated by an expert 

gastrointestinal pathologist using the HALOTM software v2.3.2089.52 (Indica Labs, Corrales, NM, 

USA). For each slide, the annotated tumour areas were divided into tiles of 512x512 pixels. Tiles that 

have an overlap with the annotated tumour areas of less than 20% were excluded to avoid tiles 

containing pen markers. Tiles with less than 50% tissue area were further excluded. We identify tissue 

areas by converting an image into greyscale [5] and using Otsu’s method [6] to determine a global 

threshold in which pixels with a greyscale value higher than the threshold were considered 

background and those with a greyscale value lower than or equal to the threshold were considered 

part of tissue areas. Total tissue area and the number of tiles is shown in [Figure S1]. At 5x 

magnification, neighbouring tiles were 50% overlapped in the FOCUS and TCGA cohorts (resections). 

To account for the small sample surface area of the tumour identified in endoscopic biopsies of the 

GRAMPIAN cohort at 5x, tiles with a 75% overlap were used. At 20x, no overlap in FOCUS and TCGA 

and 50% overlap in GRAMPIAN were used. 

imCMS classifier and the training procedure 

We trained a neural network to classify a given image tile taken from the marked tumour area into 

one of the 4 CMS classes. An Inception V3[7] model whose final fully connected layer was modified 

to output 4 classes was initialised with weights pretrained on the ImageNet dataset[8]. The network 

was trained on samples taken from the FOCUS cohort [Figure 1C, Table S4]. The class of each tile 
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in the training set was matched to the overall RNA-based CMS call of the FOCUS slide. Image tiles 

were resized from 512x512 pixels to 299x299 pixels before feeding to the network, effectively 

reducing the magnification of tiles from 5x to 3x and 20x to 12x. Tiles from unclassified slides were 

excluded. We trained 5 separate models with different subsets of the data in the manner akin to cross-

validation [Table S4]. That is three portions were used for training, and one portion each for validation 

and testing. During training, classification performance at the slide level, determined by a macro 

average F1 score, was evaluated on the validation partition. The model that yielded the highest 

performance on this portion was then selected and applied on the test portion as well as unseen 

samples from TCGA and GRAMPIAN cohorts [Table S4]. The split was done at the patient level, i.e., 

no image tiles from the same patients would be used for training, validation, and testing at the same 

time. During training, data augmentation [9] were applied in the following order: (1) random horizontal 

flip with 50% chance and random vertical flip with 20% chance, (2) random orientation of image tiles 

with a rotation degree uniformly drawn from a set of [0, 90, 180, and 270], (3) colour jittering with 

brightness, contrast, saturation, and hue factors uniformly drawn from the intervals [0.5, 1.5], [0.75, 

1.5], [0.8, 1.2], and [-0.1, 0.1], respectively. Data augmentation, including colour jittering, random flip 

and random orientation of image tiles were used during training. We set the initial learning rate at 

0.0002 and used ADAM optimiser[10].  

Testing the model on independent cohorts 

On the TCGA and GRAMPIAN datasets, we applied 5 versions of the imCMS model, producing 5 

different classification results for each tile which were then averaged to obtain the final prediction 

[Table S4]. The prediction probability for each imCMS class was obtained from the proportion of the 

number of tiles assigned to that class, and the final imCMS call at the slide level was derived from 

the majority vote of tiles [Figure 1D]. No unclassified slides were used in the evaluation. The 

classification performance of the model is reported in [Table S2, Table S3]. 
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Determination of an optimal decision cutoff in the GRAMPIAN cohort  

Image tiles containing features associated with the imCMS1 class in resection specimens were 

underrepresented in the rectal biopsies in the GRAMPIAN cohort due to the inherent biological 

differences in rectal cancer with a lower frequency of CMS1 cases as well as the clinical process of 

biopsy sampling from the tumour surface, leading to a different representation of microenvironment 

features in biopsy samples. This resulted in very few image tiles classified as imCMS1 [Table S5], 

leading to very few biopsy samples classified as imCMS1 based on the majority vote rule [Table S3]. 

As such, an alternative decision cut-off that took into account the underrepresentation of imCMS1 

tiles was required. To this end, we trained a RF model with 100 trees of the maximum depth of 2. The 

input representing each biopsy slide was a vector of the imCMS prediction scores and the output was 

the predicted imCMS class. We trained the model on the 20% of CMS classified patients (the same 

subset of the data used in the domain adversarial training described in the below section). In addition, 

we showed that the choice of the training subset did not compromise the performance of the random 

forest model [Table S6]. Here, we performed 3 separate trials in which 20% of CMS classified patients 

were selected at random while preserving the class distribution of the original data to train the model. 

Domain adversarial training for better generalisation 

To prevent the learning of dataset-dependent features that would limit the general applicability of 

the model, we leveraged domain-adversarial training.[11] The model was augmented with an 

additional classifier for predicting whether tiles were drawn from the training (FOCUS) or external 

cohorts (TCGA and GRAMPIAN) [Figure 1C]. We forced this classifier to perform poorly to 

encourage the learning of dataset-independent features. Domain adversarial training did not involve 

imCMS class information. From all cohorts a random subset of tiles taken from CMS classified 

samples was used during training. All CMS labelled cases of FOCUS were used, 30% of the CMS 

labelled patient cases of TCGA as well as 20% of the CMS labelled cases from GRAMPIAN 

cohorts. [Table S4]. Patient cases from TCGA and GRAMPIAN were selected randomly. This 

random selection was only performed once and the resulting adversarial learning is based on this 
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specific selection. While using a small proportion of samples from TCGA and GRAMPIAN for the 

domain adversarial training might introduce a bias [Figure 2a, Tables 2, S8], the improvement was 

consistent in both training and unseen portions of the TCGA and GRAMPIAN data [Table S7]. This 

supports the argument that domain adversarial learning was critical to train a classifier that is 

suitable for a better generalisation.  

Handling of multiple slides in patient-level analyses 

Two serial sections were available for the majority of cases in FOCUS and GRAMPIAN cohorts (see 

Patient Section above for details). To avoid data correlation due to multiple representative slides from 

the same patients, we performed two separate analyses. If a case consisted of two slides, only one 

slide was used in each analysis. If only one slide was available, it would be used in both analyses. 

This applies to the following analyses: i) molecular association of the CMS unclassified samples 

[Figures 2D, S5, Table S10], ii) cosine similarity between the imCMS and CMS prediction scores 

[Figures 3D, S7B], and iii) Survival analyses [Figures 4, S8, Table S11] 

Intratumoural heterogeneity of the imCMS classification  

We approached the problem of tumour heterogeneity using three different modelling approaches: 

First, to assess if the local distribution of imCMS is not due to random chance, we statistically 

compared the distribution of imCMS calls generated by the classifier with calls generated by a model 

assigning each CMS class an equal weight using the Kolmogorov-Smirnov test (H0: imCMS labels 

are uniformly distributed; H1: imCMS labels are not uniformly distributed). The results are shown in 

[Figure S5]. Second, we assessed the robustness of imCMS across the three different cohorts. Here, 

we represented each of the imCMS classes as a distribution over morphological patterns, which are 

identified using clustering methods (see details in Clustering Analyses below). We observed that 

the distribution profiles of the same CMS class are consistent across cohorts. This implies that our 

classification framework can robustly identify common morphological patterns that are enriched in 

different transcriptional classes [See Figure S10]. Third, we assessed whether the similarity between 

the imCMS and CMS prediction probabilities is not due to random chance. Cosine similarity was 

calculated between each pair of corresponding imCMS and CMS prediction probabilities. Samples 
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were then stratified according to their primary and secondary CMS profile. For each stratification, we 

tested the null hypothesis (H0) that the distribution of the cosine similarity values between pairs of 

corresponding imCMS and CMS prediction probabilities is similar to the distribution of the cosine 

similarity values calculated between pairs of CMS and random prediction probabilities. Here, we 

assumed that a random model, in which the probability for all imCMS classes are equal, is a 4-

dimensional Dirichlet distribution with a concentration parameter of 1.0 in each dimension. To form a 

baseline distribution in each stratification of samples, a total of 100 random prediction probabilities 

were drawn and the cosine similarities of these random prediction probabilities and the mean of the 

CMS prediction probabilities were calculated. To test the null hypothesis, the median difference 

between groups was compared using the Wilcoxon rank-sum test. The p-values were adjusted to 

control false discovery rate.[12] Any comparison that was highly underpowered due to the sample 

size (less than 2 data points in one of the populations) was discarded. For each group, outliers were 

removed using Tukey’s rule.[13] P-values <0.05 were considered statistically significant. See 

comparison results in Figures 3 and S7. 

Clustering analyses 

We performed clustering analysis on image tiles to identify differential histological patterns [Figure 

S10]. We represented each image tile by a feature vector obtained from the convolutional layer prior 

to the fully connected layer in the Inception V3 model. The feature vectors were standardised 

independently in each dimension to have zero mean and unit variance. Principal component analysis 

(PCA) was then performed to reduce the dimensionality of the feature vectors from 1024 to 128. The 

choice of the reduced dimensionality was based on the amount of explained variance. 

 

In the clustering analysis, we sampled up to 20 tiles from each slide from all 3 datasets, resulting in a 

total of 27,053 tiles. Self-organising map (SOM)[14] with a 10-by-10 grid was then performed on the 

feature vectors representing these tiles to initially identify 100 clusters of tiles with histologically similar 

patterns. Consensus clustering[15] based on robust continuous clustering (RCC)[16] was 
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subsequently deployed to determine the final similarity clusters. Here, the consensus clustering was 

done on the set of 100 SOM exemplars and for the RCC we used the cosine distance as a similarity 

metric and set the clustering threshold to 1. In the bootstrapping process of the consensus clustering, 

the number of neighbours (k) of the RCC was varied from 3 to 11, and for each value of k, we ran 

RCC for 50 times each with 80% of the exemplars. 

Survival analyses 

Overall survival (OS) in the FOCUS cohort was computed from the time of diagnosis of the primary 

CRC (from 1988 to 2003) until death and was right censored for patients still alive at the date of last 

known follow-up. Progression-free interval (PFI) in the TCGA cohort was defined as a period from the 

date of diagnosis until the date of the first occurrence of a new tumour event, which includes 

progression of the disease, locoregional recurrence, distant metastasis, new primary tumour, or death 

with tumour. Patients who were alive without these events or died with unrelated reasons were 

censored[2]. OS and PFI in TCGA were retrieved from Liu et al[2]. Relapse-free survival (RFS) was 

measured in GRAMPIAN and right-truncated at 3 years. RFS is a period from the date of first 

diagnosis until the date of the first relapse event after confirmation of a disease-free status. Patients 

who died with unrelated reasons or were alive without new relapse events were censored [2]. In total, 

survival data were available in 362, 460, and 125 patients from FOCUS, TCGA and GRAMPIAN 

cohorts, respectively [Table S1]. In all cohorts, CMS unclassified patients were excluded. This 

excluded 84 (FOCUS), 33 (TCGA), and 42 (GRAMPIAN) patients. A total of 32 patients with less than 

1 month follow-up time were further excluded from the TCGA cohort. This led to 278 (FOCUS), 395 

(TCGA), and 83 (GRAMPIAN) patients used in the analyses. Univariable and multivariate Cox 

proportional hazards analyses were performed to assess the prognosis. Multivariate Cox regression 

analysis was carried out with TNM stage, age and gender as possible confounding factors. Patients 

with missing data in any covariate were dropped from the models. P-values <0.05 were considered 

statistically significant. Results are summarised in Table S11. 
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Ethics approval 

Cohorts 1 and 3 of S:CORT had ethical approval (REC 15/EE/0241) by the East of England - 

Cambridge South Research Ethics Committee.  
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