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AbsTrACT
Objective Whether gastric metaplasia (GM) of 
the oesophagus should be considered as Barrett’s 
oesophagus (BO) is controversial. Given concern 
intestinal metaplasia (IM) may be missed due to 
sampling, the UK guidelines include GM as a type of BO. 
Here, we investigated whether the risk of misdiagnosis 
and the malignant potential of GM warrant its place in 
the UK surveillance.
Design We performed a thorough pathology and 
endoscopy review to follow clinical outcomes in a novel 
UK cohort of 244 patients, covering 1854 person years 
of follow- up. We complemented this with a comparative 
genomic analysis of 160 GM and IM specimens, focused 
on early molecular hallmarks of BO and oesophageal 
adenocarcinoma (OAC).
results We found that 58 of 77 short- segment (<3 cm) 
GM (SS- GM) cases (75%) continued to be observed as 
GM- only across a median of 4.4 years of follow- up. We 
observed that disease progression in GM- only cases 
and GM+IM cases (cases with reported GM on some 
occasions, IM on others) was significantly lower than 
in the IM- only cases (Kaplan- Meier, p=0.03). Genomic 
analysis revealed that the mutation burden in GM is 
significantly lower than in IM (p<0.01). Moreover, 
GM does not bear the mutational hallmarks of OAC, 
with an absence of associated signatures and driver 
gene mutations. Finally, we established that GM found 
adjacent to OAC is evolutionarily distant from cancer.
Conclusion SS- GM is a distinct entity from SS- IM and 
the malignant potential of GM is lower than IM. It is 
questionable whether SS- GM warrants inclusion in BO 
surveillance.

InTrODuCTIOn
Barrett’s oesophagus (BO) is a precursor lesion for 
oesophageal adenocarcinoma (OAC) and provides 
an opportunity to improve outcomes by detecting 
dysplasia and cancer early. BO is characterised by 
the replacement of squamous oesophageal epithe-
lium with columnar- lined epithelium with a crypt 
architecture. Metaplastic glands in BO can be 
gastric or intestinal in nature, and a non- dysplastic 

BO (NDBO) segment will typically be a mosaic of 
different gland types. A segment with only gastric- 
type glands (no goblet cells) is called gastric meta-
plasia (GM); identification of any intestinal- type 
glands leads to a designation of intestinal meta-
plasia (IM) (online supplemental figure 1). NDBO 
can progress to low- grade and high- grade dysplasia 
(LGD, HGD) and then potentially to OAC.

WHAT Is ALrEADY KnOWn On THIs TOPIC
 ⇒ The UK guidelines are distinct from most 
countries, by not requiring goblet cells 
(intestinal metaplasia (IM)) for a diagnosis of 
Barrett’s oesophagus.

 ⇒ IM can be misdiagnosed as gastric metaplasia 
(GM) if sampling is insufficient.

WHAT THIs sTuDY ADDs
 ⇒ Short- segment GM can be molecularly 
distinguished from short- segment IM.

 ⇒ The risk of progression is substantially lower in 
GM than in IM.

 ⇒ GM does not bear the genomic hallmarks of 
oesophageal adenocarcinoma.

 ⇒ GM is not evolutionarily close to oesophageal 
adenocarcinoma, even when found adjacent to 
the cancer.

HOW THIs sTuDY MIGHT AFFECT rEsEArCH, 
PrACTICE Or POLICY

 ⇒ The low risk of progression in GM suggests that 
UK Barrett’s oesophagus surveillance guidelines 
could be updated to require the presence of 
goblet cells in short segments.

 ⇒ This would reduce oversurveillance, resulting 
in better quality of life for these patients and 
improved focusing of resources on higher risk 
patients.

 ⇒ It would also bring the UK in line with the 
international community. This would reduce 
confusion, and facilitate comparisons, for 
research and clinical practice.
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Most patients with BO will never develop OAC though, with 
annual progression rates to OAC of 0.1%–0.5% for NDBO.1–3 
The UK surveillance guidelines stand apart in their definition of 
BO. In the UK, GM of at least 1 cm is sufficient for a BO diag-
nosis4; elsewhere, presence of IM is required.5–8 This distinc-
tion may be substantial: a study suggested that removing the US 
requirement for goblet cells would lead to a 147% increase in 
BO diagnoses, with little impact on OAC diagnoses.9

However, there remains conflicting clinical evidence about the 
malignant potential of GM. While there is evidence supporting 
GM having very low risk of progression, and lower risk than 
IM,9–11 several studies reached an opposing conclusion. Specif-
ically, that most GM cases progressed to IM12 13 and then on 
to OAC at a similar rate as index- IM cases.14 Much of the 
discrepancy is likely due to sampling. In patients with gastric 
and intestinal glands (GM+IM), goblet cells are not uniformly 
distributed,15 so areas of the segment can look like GM and be 
misdiagnosed (figure 1).

Frequent co- occurrence of GM and OAC has been used to 
argue the malignant potential of GM and to contest the view 
that OAC typically arises from IM.16 However, overgrowth of 
IM and sampling error could also explain the absence of visible 
IM.17 18 Recent computational analysis provided new evidence 
that most OACs do arise via IM, despite its frequent absence.19 
Furthermore, it has been shown that IM develops from undiffer-
entiated gastric cardia cells, and that BO is a unifying pathway to 
OAC.20 Transcriptional differences suggest that true GM is more 
akin to normal gastric cells than IM.20–23

The molecular hallmarks of OAC are single base substitution 
(SBS) signatures 17a and 17b, TP53 mutations, genomic insta-
bility, a plethora of lower frequency mutations and larger scale 
structural rearrangements.24–26 Evidence of genomic differences 
between GM and IM is poorly delineated and tends to be based 
on a small number of samples and a subset of the genome.27 28 
Reported phylogenies vary from cases where GM shares little 
evolutionary history with OAC,29 to a case where OAC had 
developed directly from gastric BO glands.30

This study examines the relative malignant potential of GM 
compared with IM, to assess whether the distinction between 
the two is clinically relevant. We performed a thorough review 
of endoscopy and pathology reports across a novel cohort of 244 
patients (figure 2), covering 1854 person years of follow- up. 
We separately assessed outcomes in GM- only, IM- only and 
GM+IM cases. We complemented clinical outcome analysis 
with genomic analysis assessing molecular hallmarks of OAC 
in GM and IM, in both BO only and BO adjacent to OAC 
contexts.

METHODs
Clinical outcome cohort
A cohort was selected from a database of patients under BO 
surveillance at Addenbrooke’s Hospital (Cambridge University 
Hospitals NHS Foundation Trust) who consented prospectively 
to research participation. Strict selection criteria were applied 
to pathology, endoscopy and medical histories (online supple-
mental table S1). All oesophagogastroduodenoscopies (OGDs) 
comprised of multiple biopsies, each with known pathology. 
The centre follows a systematic biopsy protocol, in- line with 
the Seattle protocol. Each OGD had a single classification of IM 
(if any biopsy had IM) or GM (if no biopsy had IM). Patients 
needed to have an index diagnosis of GM or IM. The index 
segment length needed to be at least 1 cm, with no upper limit 
for index- GM cases, but less than 3 cm for index- IM cases. From 
a total of 5625 patients in the database, 244 were selected: 77 
index- GM, short- segment cases; 23 index- GM, long segment; 
144 index- IM, short segment (figure 2).

surveillance analysis
Cases with no follow- up after 1 December 2016 were presumed 
to have been discharged. This represented 6 years at the time of 
analysis. IM biopsies were classified into one of three groups: 
focal IM, widespread IM or unspecified, based on pathologist 
judgement. The terms ‘focal’ or ‘minimal’ were considered for 
focal IM, and ‘widespread’ or ‘extensive’ for widespread IM. 
Cases were classified as GM- only or IM- only, if OGD diagnoses 
were consistent; GM+IM, if there were both GM and IM diag-
noses in the case history. If an otherwise IM- only case- reported 
GM followed by IM less than a year later, this was considered 
IM- only.

bO-only genomic cohort
Tissue samples were available for patients in the Cell Determi-
nants Biomarker study (REC 01/149), an observational study 
to identify biomarkers of the development and progression of 
BO. GM- only patients had to have only ever had GM biop-
sies and were chosen to include a range of ages and both male 
and female; 14 patients were selected.21 Twenty- seven ‘non- 
dysplastic, non- progressor’ cases formed an IM- only compara-
tive set31 (figure 2).

Adjacent bO and OAC genomic cohort
A cohort was selected from patients with tissue samples avail-
able from OAC resections or biopsies. The patients were sourced 
from the Oesophageal Cancer Classification and Molecular 

Figure 1 Illustration of the challenge of misdiagnosis due to undersampling of GM+IM segments. BO, Barrett’s oesophagus; GM, gastric metaplasia; 
IM, intestinal metaplasia.
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Stratification (OCCAMS) consortium in the UK. Individual 
informed consent was provided by all subjects (REC 07/
H0305/52 and 10/H0305/1). Whole genome sequencing (WGS) 
was performed on 53 IM, 4 GM and 28 dysplasia samples and 
on OAC adjacent to each. Whole exome sequencing (WES) was 
performed on 34 GM and 28 IM samples, from 54 patients (8 
patients had GM and IM), along with adjacent OAC, as well as 
42 OAC samples with no adjacent BO (figure 2). Patients had to 
be chemo- naïve at the time of sampling. Patient characteristics 
are included in the online supplemental table S2.

DnA extraction, library preparation and sequencing
For WGS, genomic DNA from samples and germline controls was 
extracted and processed as previously reported.21 31 For WES, 
samples were prepared from formalin- fixed paraffin- embedded 

(FFPE) slides. Pathologists identified areas of distinct tissue type 
with sufficient cellularity for sequencing (online supplemental 
figure 5), which were macrodissected and processed as described 
in the online supplemental methods.

Library preparation and enrichment for the WES samples 
were performed using Illumina DNA Prep with Enrichment, 
with 6- plex pooling. Sequencing was performed on an Illumina 
NovaSeq 6000 or HiSeq 4000, at the Cancer Research UK 
Cambridge Institute. Mean sequencing depth was 150×, with 
germline samples sequenced to at least 33× and BO or OAC 
samples to at least 53×.

Variant calling and copy number alterations
For the WGS samples, variants, copy number alterations 
(CNAs) and mutational signatures were called as previously 
described.21 31 For the WES samples, analysis focused on 

Figure 2 Study design. Flow chart showing creation of clinical outcomes cohort and sequencing cohorts. BO, Barrett’s oesophagus; GM, gastric 
metaplasia; IM, intestinal metaplasia; OAC, oesophageal adenocarcinoma.

Table 1 Outcomes across all biopsy results for each of the three index biopsy subgroups
All biopsy results Index GM- ss Index GM- Ls Index IM- ss Total cases Mean OGDs

GM only 58 (75%) 9 (39%) 67 3.28

  of which progressed to LGD 0 0 0

  of which progressed to HGD or IMC 0 0 0

GM+IM 19 (25%) 14 (61%) 44 (31%) 77 4.84

  of which progressed to LGD 1 0 1 2

  of which progressed to HGD or IMC 0 0 0 0

IM only 100 (69%) 100 4.20

  of which progressed to LGD 6 6

  of which progressed to HGD or IMC 5 5

Total 77 23 144 244 4.15

Median follow- up years 6.1 9.7 7.8 7.2

Total follow- up years 473 220 1161 1854

GM, gastric metaplasia; HGD, high- grade dysplasia; IM, intestinal metaplasia; LGD, low- grade dysplasia; OGDs, ophagogastroduodenoscopies.
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single- nucleotide variants (SNVs) and small insertion and dele-
tions (indels). FASTQ files were aligned to GRCh37 using BWA- 
MEM, with duplicates marked by Picard V.2.9.5. Variant calling 
was performed using GATK Mutect2 V.4.1.7.0,32 using multis-
ample and FFPE settings. Mutation filtering and copy number 
analysis are detailed in the online supplemental methods.

Driver gene analysis
The set of OAC driver genes used was the 76 genes identified by 
Frankell et al.25 We classed a subset of these as ‘early IM/OAC 
genes’: TP53, CDKN2A, ARID1A, SMARCA4, MUC6. These 
genes are frequently mutated in IM,31 33 34 and under selection 
in IM.35 Only non- silent mutations were included in driver gene 
analysis. Where multiple samples of the same tissue type were 
extracted for the same patient, a single sample was chosen at 
random to be included in analyses.

Phylogenetic analysis
Clustering of SNVs was performed in PyClone V.0.13.1,36 inte-
grating CNAs. Identified clusters with at least 10 mutations and 
median variant allele frequency (VAF) of at least 0.05 were used 
in ClonEvol37 to create phylogenetic trees, with indels assigned 
to clusters post hoc. Shared mutations between the BO and 
OAC, with cancer cell fraction of at least 0.3 in OAC, were set as 
the founding cluster, even if fewer than 10 mutations.

statistical analysis
Statistical analysis was performed in R V.4.0.3. The ‘survival’ 
and ‘survminer’ packages were used for Kaplan- Meier analysis 
and survival plots; with p values from log- rank tests. For muta-
tional burden and somatic chromosomal alteration (SCA) load, 
means were compared using unpaired Wilcoxon’s tests. A Pear-
son’s χ2 test tested association between focal and widespread IM 
and outcomes. For all statistical analyses, a p value <0.05 was 
considered significant. STROBE (Strengthening the Reporting of 
Observational Studies in Epidemiology) cohort reporting guide-
lines were used.38

Patient and public involvement
Patient group Heartburn Cancer UK review and co- design all 
our patient facing materials for the Cell Determinants Biomarker 
and OCCAMS studies. A lay friendly version of this paper will 
be shared with patients and the public.

rEsuLTs
short-segment GM is a distinct state, not only mis-sampling 
of IM
To understand the prevalence of true GM compared with mis- 
sampling of GM+IM, we reviewed the full pathological history 
for 100 index- GM cases. Seventy- seven were short segments (SS, 
<3 cm) on index endoscopy and 23 were long segments (LS, 
≥3 cm). Of the 77 index- GM- SS cases, over a median follow- up 
of 6.1 years, the majority (58 cases, 75%) were found to have a 
GM- only outcome (table 1). These GM- only outcomes confirm 
that persistent GM can be a distinct state in short segments.

In contrast to short segments, in the majority of index- GM- LS 
cases (14/23 cases, 61%), IM was detected in at least one later 
biopsy. Later detection of IM could be due to sampling at index 
or progression, and these two scenarios cannot be distinguished 
here. Four of the 14 GM+IM cases were first diagnosed before 
the Seattle protocol was recommended. A GM+IM outcome was 
also noted in 44 of the 144 (30%) index- IM- SS cases (table 1).

In some pathology reports, IM was noted as focal or wide-
spread. This was examined to understand if focal IM contrib-
uted to GM+IM outcomes. A Pearson’s χ2 test showed that a 
GM+IM versus IM- only outcome was significantly dependent 
on focal or widespread IM (online supplemental table S3).

The sequence of diagnoses within the 33 index- GM, GM+IM 
outcome cases, was reviewed for patterns that could inform 
clinical practice, but no consistent patterns were observed 
(figure 3B, online supplemental table S4). Eighteen cases (55%) 
required three or more OGDs before observing IM. If a GM+IM 
outcome is due to sampling, a single repeat OGD is not always 
sufficient to overcome this challenge.

The surveillance history of the index- IM, GM+IM cases was 
limited, as 17 of the 44 patients (39%) had no further OGDs 
after the first GM or irregular Z- line observation (figure 3C). 
The surveillance histories of GM- only and IM- only cases are 
included for reference (figure 3A and D).

Progression to dysplasia and cancer is lower in GM and 
GM+IM than IM
The progression rates to dysplasia and OAC were compared 
between GM, GM+IM and IM to understand the malignant 
risk. In total, this covered 1854 person- years of follow- up, with 
a median of 4.9 years in GM- only cases, 10.1 years in GM+IM 
cases and 7.5 years in IM- only cases. There was no progres-
sion to LGD, HGD or cancer in GM- only cases. Progression 
to LGD was identified in one index- GM, GM+IM case (1%), 
but no progression to HGD or cancer. This case that progressed 
was not treated after the LGD diagnosis, showed no abnormal 
p53 expression, and LGD was not seen again on later biop-
sies (figure 3B). Re- review by an expert upper gastrointestinal 
pathologist upheld the LGD diagnosis. Progression was higher 
within index- IM cases. Seven index- IM cases (5%, one GM+IM, 
six IM- only) progressed to LGD but not further. Of these seven 
cases, three were treated (as now recommended by guidelines) 
and four were not. Recent biopsies for the untreated cases did 
not show LGD, consistent with the difficulty in diagnosing 
this grade of dysplasia. A further five index- IM cases (3%, all 
IM- only) progressed to HGD or IMC (table 1).

Kaplan- Meier analysis compared progression to LGD and 
HGD in GM- only, GM+IM and IM- only cases (figure 4). For 
both LGD and HGD, there was a significance in the difference 
between progression rate by metaplasia type (p=0.029 LGD, 
p=0.031 HGD), with progression lower in GM and GM+IM 
than in IM.

Finally, to understand consistency in length assessment, the 
endoscopy history was reviewed for each case. Strikingly, nearly 
all index GM- LS cases had a shorter length on a later endoscopy. 
The converse pattern was not observed: segments were rarely 
reported as a longer length in later OGDs (online supplemental 
figure 2). This suggests a trend over time to shorter assessments, 
rather than natural variation in length assessment.

GM bears few genomic hallmarks of OAC
It is well known that IM bears genomic hallmarks of OAC, 
such as driver gene mutations and signatures SBS17a/SBS17b. 
Less has been reported on the genomics of GM, particularly in 
a GM- only context. In the WGS of 14 GM- only samples and 
27 IM- only samples, a significantly lower mutational burden 
in GM compared with IM was evident, even when the samples 
were partitioned into short and long segments (figure 5A). The 
difference in burden was also not explained by the ages in the 
two groups (figure 5B). SBS17a/b were detected in nearly all IM 
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Figure 3 GM is a distinct state, not mis- sampling of IM. Progression to dysplasia and cancer is lower in GM than IM. (A) Surveillance history of 67 
index- GM, GM- only outcome cases. (B) Surveillance history of 33 index- GM, GM+IM outcome cases. (C) Surveillance history of 44 index- IM, GM+IM 
outcome cases. (D) Surveillance history of 100 index- IM, IM- only outcome cases. For (A−D), each vertical trajectory is an individual case history, with 
the marker shapes denoting the histopathological assessment for each OGD. Each case has its surveillance time indexed to baseline, with the length 
of the vertical line representing total surveillance time. BO, Barrett’s oesophagus; FIM, focal intestinal metaplasia; GM, gastric metaplasia; HGD, high- 
grade dysplasia; IM, intestinal metaplasia; IMC, intramucosal carcinoma; IND, indefinite for dysplasia; LGD, low- grade dysplasia; WIM, widespread 
intestinal metaplasia.
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samples, but only in one GM sample (figure 5C). SBS1, a signa-
ture associated with ageing, was present in all GM samples, and 
all but one IM sample.

All samples were assessed for non- silent mutations and CNAs 
in genes associated with IM and OAC. Only one GM sample 
(7%) had an alteration in an early IM/OAC gene, SMARCA4. 
By contrast, 16 IM samples (59%) had an alteration in at least 
one early IM/OAC gene (figure 5D). The SCA load—the length 
of the genome with a copy number gain, loss or loss of hetero-
zygosity—was also assessed. There was no difference in SCA 
load between GM and IM non- progressors (figure 5E), and both 
were an order of magnitude lower than in OAC samples (online 
supplemental figure 3). No driver amplifications or deletions 
were seen in the GM samples.

Co-occurring GM and OAC are genomically distant from one 
another
To better understand the evolutionary relationship between 
different types of BO and OAC, the mutations found in adja-
cent BO and tumours were assessed using WES and WGS. The 
mutational burden in tumours was independent of the presence 
or type of BO (figure 6A). In adjacent BO, the mutational burden 
varied by type of BO, with the burden significantly lower in adja-
cent GM than adjacent IM (p=0.022) (figure 6B).

We found that one adjacent GM sample (3%) had a mutation 
in TP53 and one (3%) in MUC6, but no other GM samples had 
any mutations in early IM/OAC genes (figure 6C). By contrast, 
41 (51%) IM samples and 19 (68%) dysplastic samples had muta-
tions in early IM/OAC genes. Across the full set of OAC driver 
genes, on average, GM had mutations in 0.5 drivers, compared 
with 1.6 in IM and 2.0 in dysplasia. The one GM sample with a 
TP53 mutation did not have a second hit on TP53 and had a low 
VAF of 0.11. Of the 9 IM samples with TP53 mutations, 4 (44%) 
had a second hit in the form of LOH, as did 10 of the 14 (71%) 
TP53- mutated dysplastic samples.

There were very few shared driver gene mutations between 
the 38 GM samples and their adjacent OAC: 4 shared, 16 unique 
to GM, 132 unique to OAC (figure 6D). In the WGS samples, 
there were no driver amplifications or deletions called in GM. It 
is notoriously difficult to robustly call CNAs in WES, but using 
a joint segmentation approach, one shared amplification was 
called between GM and OAC (online supplemental figure 4), 

although in a GM sample with no TP53 mutation. Mutational 
overlap was also low between IM and OAC, but much higher 
between dysplasia and OAC (27 shared, 32 unique to dysplasia, 
74 unique to OAC, figure 6D). This suggests that GM is distantly 
related to the OAC, and most mutations in driver genes in GM 
are not drivers of oncogenesis in this context. Phylogenetic 
trees for the matched samples, with branch length representing 
number of mutations, also demonstrate the relative distance of 
GM from OAC compared with dysplasia and OAC (figure 6E). 
The example tree with GM and OAC had a very short trunk of 
shared mutations and no shared OAC driver gene mutations. By 
contrast, the HGD and OAC tree had a long trunk, including 
four shared mutations in OAC driver genes.

DIsCussIOn
We present clinical and genomic evidence for the lower malig-
nant potential of GM. We followed clinical outcomes in a novel 
cohort of 244 patients, uniquely representing recent clinical prac-
tice in a country where GM is still surveilled. We also analysed 
sequencing of 41 GM and IM samples from non- progressors and 
119 GM and IM samples from patients with OAC.

The clinical data demonstrate that the progression in GM and 
GM+IM is extremely low and lower than in IM (0% incidence 
per year of HGD or cancer in index- GM, 0.43% in index- IM). 
This is consistent with a large- scale population study,10 which 
observed a lower rate of progression in 3179 GM cases 
compared with 3917 IM cases (0.07% vs 0.38% incidence of 
HGD or cancer per year) but lacked length data and a systematic 
biopsy protocol. The results are also consistent with the US study 
by Westerhoff et al,9 which saw no progression to OAC across 
379 patients with GM but did not have a focus on patients with 
GM+IM. While it cannot be said that GM will never progress to 
OAC, we expect that the progression rate is more akin to that of 
the general population than that of patients with IM.

The results may appear inconsistent with the study by Evans et 
al, which categorised BO segments on a microscopic level, based 
on diversity of gland phenotypes.39 They reported that segments 
with higher gland diversity had higher progression risk, which 
might be taken to suggest higher progression in GM+IM cases. 
However, there is no link between our longitudinal outcome 
categories and microscopic diversity of glands; IM- only segments 

Figure 4 Progression to dysplasia and cancer is lower in GM than IM. Kaplan- Meier curves for progression to LGD or higher and to HGD or higher, 
separated by classification. GM, gastric metaplasia; HGD, high- grade dysplasia; IM, intestinal metaplasia; LGD, low- grade dysplasia.
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can have higher diversity of glands than GM+IM segments, 
especially given IM is so often focal within GM+IM cases.

It is well known that IM can be missed in GM+IM samples, 
particularly if the IM is focal. However, most short GM 
segments continued to receive a GM diagnosis, including cases 
with over five OGDs. This gives confidence that these are true 
GM segments throughout the surveillance period, not under-
sampled GM+IM. This is consistent with the findings of Chan-
drasoma et al,11 who found that under a robust sampling regime, 

it was possible to identify true GM cases, and Westerhoff et al, 
who found that 88% of purported patients with GM continued 
to have no goblet cells.9 While other studies have shown much 
higher rates of later IM in index- GM cases,12–14 much can be 
explained by inadequate sampling, prior to the introduction of 
the Seattle protocol.

By contrast, the majority of the long GM segments were found 
to contain IM in a later biopsy, consistent with a study where 
7 out of 11 LS- GM were found to have IM later.12 Goblet cell 

Figure 5 GM does not bear the genomic hallmarks of OAC. (A) Mutational burden by sample type and BO segment length. (B) Mutational burden 
by age. (C) SBS signature contribution by sample. (D) Mutations in OAC associated genes, split by genes typically mutated early and late in the 
progression of OAC. Only genes with mutations in this cohort, along with TP53, are shown. (E) SCA load by sample, taken as the length of genome 
altered by a copy gain, loss or copy neutral loss of heterozygosity. BO, Barrett’s oesophagus; GM, gastric metaplasia; IM, intestinal metaplasia; OAC, 
oesophageal adenocarcinoma; SCA, somatic chromosomal alterations; SNV, single nucleotide variant.
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Figure 6 Co- occurring GM and OAC are evolutionarily distant from one another. (A) Mutation burden in OAC tumours, by type of adjacent BO. (B) 
Mutation burden in BO adjacent to OAC. (C) Mutations in driver genes by sample, across BO samples and adjacent OAC. Only genes with a mutation 
in a BO sample are shown. (D) Venn diagrams showing the degree of overlap in mutations between different types of BO and the adjacent OAC. 
(E) Example phylogenetic trees for one case with GM and adjacent OAC, and one case with HGD in an intestinal background, and adjacent OAC. 
Branch length represents number of mutations. BO, Barrett’s oesophagus; GM, gastric metaplasia; IM, intestinal metaplasia; OAC, oesophageal 
adenocarcinoma.
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Figure 7 Short- segment gastric metaplasia does not warrant surveillance. (A) Summary of features of GM and IM. (B) Current British Society of 
Gastroenterology guidelines for management of non- dysplastic BO.4 Grey boxes denote areas of recommended change. (C) Recommended flow chart 
for non- dysplastic BO. Yellow boxes denote changes to BO definition, blue boxes denote changes to GM management. BO, Barrett’s oesophagus; GM, 
gastric metaplasia; IM, intestinal metaplasia; OAC, oesophageal adenocarcinoma; OGD, oesophagogastroduodenoscopy.
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density being higher proximally15 also ties with a higher likeli-
hood of IM in a longer segment. These results suggest that more 
considered management of LS- GM cases is required than that of 
short- segment GM (SS- GM), as is already the case today.

The WGS of non- progressors showed that mutational burden 
in GM was significantly lower than that of IM (SS: p<0.01, LS: 
p=0.0123). In GM, there were very few mutations in genes 
associated with OAC, and signatures SBS17a/b were not prev-
alent. Altogether, GM does not bear the mutational hallmarks 
of OAC, but IM does. Similar results were seen in sequencing of 
GM and IM adjacent to OAC. These results are consistent with 
the targeted sequencing of Bandla et al27 but strengthen the find-
ings due to examining the whole genome or exome and almost 
four times as many OAC- associated genes.

Liu et al found similar levels of DNA- content abnormalities in 
GM and IM using image cytometry,28 and we too found similar SCA 
loads in GM and IM. Non- progressor IM, with no TP53 mutation, 
rarely has substantial CNAs. Therefore, we do not consider this 
indicative of malignant potential in either metaplasia type.

Of the few driver gene mutations seen in adjacent- GM, there 
was little overlap with mutations in the tumour. Although Lavery 
et al showed that OAC could arise from gastric glands,30 this 
was a single case, with IM. It has not been shown whether this 
occurs widely or without IM present. Our results suggest that 
adjacent GM is not routinely evolutionarily closer than IM is 
to OAC. This is consistent with phylogenies presented by Bao 
et al.29 Since an argument for the malignant risk of GM is its 
co- occurrence with OAC, it is important to be clear that even 
when GM or IM is spatially close to OAC, it does not follow that 
the GM or IM is evolutionarily close to OAC. Instead, it is likely 
that the dysplastic clone the OAC directly evolved from has been 
overgrown or was not sampled.

A few limitations should be considered with the sequencing. First, 
while the macrodissection was carried out with great care, there 
remains the possibility that some GM areas could have been sampled 
from normal cardia. Second, mutations in GM occur at low- variant 
allele frequencies, so at standard sequencing depths, it is possible that 
there were undetected mutations in relevant genes. A real strength in 
the genomic analysis here is that BO- only and BO adjacent to OAC 
have both been studied, and the results are similar in the two contexts.

Many GM studies, including ours, suffer from small sample 
sizes, primarily due to few GM patients being enrolled in studies. 
A strength of our study is the number of GM+IM cases, as low 
progression in these should reassure clinicians concerned by misdi-
agnosing GM in a GM+IM case. As with the macrodissections, we 
cannot rule out some of the GM diagnoses in the clinical outcome 
cohort coming from mis- sampled cardia. Finally, we recognise the 
limitation of the outcome cohort coming from a single centre. 
However, since this is an expert centre that follows a systematic 
biopsy protocol and sees many tertiary referrals, we are confident in 
the robustness of our findings.

While not a focus of the study, the data suggest that focal IM 
has low progression risk. It has previously been shown that focal 
IM at the gastro- oesophageal junction, after radiofrequency 
ablation, does not progress to dysplasia.40 Confirmation of 
low progression in focal IM could further improve surveillance 
targeting. Systematic capture by pathologists, which is missing 
from our study, perhaps aided by digital pathology and AI, could 
inform this. Alternatively, the cytosponge device could assist, as 
quantification of TFF3 expression from a cytosponge sample can 
identify focal IM pathologies.41

In summary, SS- GM is molecularly distinct from SS- IM. The 
malignant potential of SS- GM is low and lower than that of 

IM. We have suggested an alternative framework to help deter-
mine who should enter surveillance and would recommend that 
patients with SS- GM do not enter surveillance (figure 7). While 
some of these cases may have later been found to be GM+IM, 
short- segment GM+IM cases still represent low- risk cases. By 
contrast, there is high likelihood that LS- GM is undersampled 
GM+IM, and risk of progression is higher in longer cases.42 
Therefore, in the absence of molecular confirmation of GM and 
reconfirmation of length, we would recommend these relatively 
rare cases be treated as if they were IM (figure 7).
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